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1 Introduction
Let C be a closed convex subset of Hilbert space H
and T be a nonexpansive mapping from C into itself.
We denote by F (T ) the set of fixed points of T . Let
F (T ) be nonempty and u be an element ofC. In 1967,
Halpern [1] firstly introduced the following explicit
iterative scheme (1) in Hilbert space,

xn+1 = αnu+ (1− αn)Txn, (1)

where {αn} is a real sequence and αn ∈ [0, 1]. He
pointed out that the control conditions

(C1) lim
n→∞

αn = 0

and

(C2)
∞∑
n=1

αn = ∞

are necessary for the convergence of the iterative
scheme (1) to a fixed point of T .

In 1992, Wittman [2] showed that the strong con-
vergence of the iteration scheme (1) under the control
conditions (C1), (C2) and

(C3)
∞∑
n=1

|αn − αn+1| <∞

in the Hilbert space. After that, Shioji and Takahashi
[3] extended Wittman’s results to a uniformly convex
Banach space with a uniformly Gâteaux differentiable

norm. In 2004, H. K. Xu [4] proposed the following
viscosity iterative process {xn}:

xn+1 = αnf(xn) + (1− αn)Txn, (2)

where 0 ≤ αn ≤ 1, T : C → C is a nonexpan-
sive mapping with F (T ) ̸= ∅, and f : C → C is
a fixed contractive mapping. He showed that {xn}
strongly converges to a fixed point q of T in a uni-
formly smooth Banach space.

Recently, Chen and Song [5] introduced the
following implicit and explicit viscosity iteration
processes defined by (3) and (4) to nonexpansive
semigroup case,

xn = αnf(xn)

+(1− αn)
1

t

∫ t

0
T (s)xds, n ≥ 1, (3)

xn+1 = αnf(xn)

+(1− αn)
1

t

∫ t

0
T (s)xds, n ≥ 1, (4)

and showed that {xn} converges to a same point of∩
t>0 Fix(T (t)) in a uniformly convex Banach space

with a uniformly Gâteaux differentiable norm.
Note however that their iterate xn at step n is con-

structed through the average of the semigroup over the
interval (0 , t). Suzuki [6] was the first to introduce
again in a Hilbert space the following implicit itera-
tion process:

xn = αnu+ (1− αn)T (tn)xn, n ≥ 1, (5)
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for the nonexpansive semigroup case.
Benavides, Aceda and Xu [7] proved that if

F = {T (t) : t > 0}

satisfies an asymptotic regularity condition and αn

fulfills the control conditions (C1) and (C2) and

(C4) lim
n→∞

αn

αn+1
= 1

in a uniformly smooth Banach space, then both the
implicit iteration process (5) and the explicit iteration
(6) converge to a same point of Fix(F),

xn+1 = αnu+ (1− αn)T (tn)xn, n ≥ 1. (6)

Song and Xu [8] introduced the following implicit
and explicit viscosity iterative schemes, respectively:

xn = αnf(xn) + (1− αn)T (tn)xn, n ≥ 1, (7)
xn+1 = αnf(xn) + (1− αn)T (tn)xn, n ≥ 1. (8)

They proved that the two iteration processes strongly
converges to a same point q of Fix(F) which is a
solution of certain variational inequality in a reflex-
ive and strictly convex Banach space with a uniformly
Gâteaux differentiable norm.

Motivated and inspired by the above results, in
this paper, we study the strong convergence of the
viscosity iterative processes {zm} and {xn} by re-
spectively equations (9) and (10). We consider the
case T (t)(t > 0) is a noexpansive semigroup with∩

t>0 F (T (t)) ̸= ∅, f : C → C is a weakly contrac-
tive self-mapping, and define the implicit viscosity it-
erative method and explicit viscosity iterative method
as follows

zm = αmf(xm) + (1− αm)T (tm)zm,m ≥ 1, (9)

and
xn+1 = αnf(xn) + βnxn

+(1− αn − βn)T (tn)yn,

yn = γnxn + (1− γn)T (tn)xn, n ≥ 1. (10)

where {αn}, {βn} are two sequences in (0,1) with

αn + βn ≤ 1(n ≥ 1),

and {αm}, {γn} are two sequences in [0,1]. In a re-
flexive and strictly convex Banach space with a uni-
formly Gâteaux differentiable norm, we will prove
that {zm} and {xn} strongly converge to some point

p ∈
∩
t>0

F (T (t)),

where p is a solution to the following variational in-
equality:

⟨(f − I)p, j(x− p)⟩ ≤ 0,∀x ∈
∩
t>0

F (T (t)).

So, our results extend and improve some related re-
sults considered by Song and Xu [8], Xu [9], Wu,
Chang and Yuan[10] and the other authors.

2 Preliminaries
Throughout this paper, let E be a reflexive and strictly
convex Banach space andC be a closed convex subset
of E. Let J denote the normalized duality mapping
from E into 2E

∗
given by

J(x) = {f ∈ E∗, ⟨x, f⟩ = ∥x∥∥f∥,

∥x∥ = ∥f∥}, ∀x ∈ E,

where E∗ denotes the dual space of E and ⟨., .⟩ de-
notes the generalized duality pairing. We shall de-
note the single-valued duality mapping by j. When
{xn} is a sequence in E, then xn → x (respectively
xn ⇀ x, xn ⇁ x) will denote strong (respectively
weak, weak∗) convergence of the sequence {xn} to x.

A Banach space E is said to be strictly convex if

∥x+ y∥
2

< 1

for
∥x∥ = ∥y∥ = 1, x ̸= y;

the function δ : [0, 2] → [0, 1] is said to be the modu-
lus of convexity of Banach space E, where

δε = inf{1− ∥x− y∥/2 :
∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ε}.

E is said to be uniformly convex if for each δε > 0.
Let

S(E) = {x ∈ E : ∥x∥ = 1}.

The norm of Banach space E is said to be Gâteaux
differentiable, if the

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ S(E). Moreover, if for each
y ∈ S(E), the limit exists uniformly for x ∈ S(E),
we say that the norm of E is uniformly Gâteaux dif-
ferentiable. It is well known that each uniformly con-
vex Banach space E is reflexive and strictly convex
and if E is reflexive and smooth, then the duality map-
ping J is single valued (see [11-13]).
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Definition 1 Let C be a nonempty subset of a Banach
space E and T : C → C a mapping. T is called a
Lipschitzian mapping if there exists a constant L >
0 such that

∥Tx− Ty∥ ≤ L∥x− y∥

for all x, y ∈ C, and L is called Lipschitz constant
of T . T is called nonexpansive mapping if L = 1, T
is called contraction mapping if L ∈ [0, 1).

Definition 2 [12] An operator T with domain D(T )
and rang R(T ) in a Banach space E is said to be
weakly contraction, if

∥Tx− Ty∥ ≤ ∥x− y∥ − ψ(∥x− y∥),∀x, y ∈ C,

where ψ : [0,∞) → [0,∞) is a continuous and non-
decreasing function such that ψ(0) = 0, ψ(t) > 0 for
all t > 0 and limt→∞ ψ(t) = ∞.

Remark 3 If ψ(t) = kt for all t ≥ 0, where k ∈
(0, 1), then T is a contraction with Lipschitz constant
1− k. It is obvious that the class of contraction map-
pings is a subclass of the class of weakly contraction.

Definition 4 A family F = {T (t) : t ≥ 0} of map-
ping of C into itself is called nonexpansive semigroup
of C, if it satisfies the following conditions:

(1) T (t1+t2)x = T (t1)T (t2)x, for each t1, t2 ≥
0 and x ∈ C;

(2) T (0)x = x, for each x ∈ C;
(3) limt→0 T (t)x = x, for x ∈ C;
(4) for each t > 0, T (t) is nonexpansive, that is,

∥T (t)x− T (t)y∥ ≤ ∥x− y∥,∀x, y ∈ C.

We shall denote by F the common fixed point set of F ,
that is,

F := Fix(F) = {x ∈ C : T (t)x = x, t > 0}

=
∩
t>0

Fix(T (t)),

where Fix(T ) = {x ∈ C : Tx = x} is the set of
fixed points of a mapping T .

Definition 5 F is said to be uniformly asymptotically
regular (in short,u.a.r) on C if for all h ≥ 0 and any
bounded subset K of C,

lim sup
t→∞,x∈K

∥T (h)(T (t)x)− T (t)x∥ = 0.

Let µ be a continuous linear functional on l∞

and let (a0, a1, · · ·) ∈ l∞, we use µm(am) instead
of µ((a0, a1, · · ·)), we call µ a Banach limit when
µ satisfies ∥µ∥ = µm(1) = 1 and µm(am+1) =
µm(am) for each (a0, a1, · · ·) ∈ l∞.

Lemma 6 [14] Let C be a nonempty closed convex
subset of a Banach space E with a uniformly Gâteaux
differentiable norm, and {xm} a bounded sequence of
E, let z0 be a element of C and µ be a Banach limit.
Then

µm∥xm − z0∥2 = min
y∈C

µm∥xm − y∥2,

if and only if

µm⟨y − z0, j(xm − z0)⟩ ≤ 0, ∀y ∈ C.

Lemma 7 [15] Let {xn} and {yn} be bounded se-
quences in a Banach space E and let {βn} be a se-
quence in [0,1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose

xn+1 = βnxn + (1− βn)yn

for all integers n ≥ 0 and

lim sup
n→∞

(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0.

Then
lim
n→∞

∥yn − xn∥ = 0.

Lemma 8 [12] Let {un} and {vn} be two sequences
of nonnegative real numbers such that limn→∞

vn
un

=

0 and
∑
un = ∞. Let {λn} be a sequence of nonneg-

ative real numbers satisfying the recursive inequality:

λn+1 ≤ λn − unϕ(λn) + vn, ∀n ∈ N,

where ϕ : [0,∞) → [0,∞) is a continuous and non-
decreasing function such that ϕ(0) = 0 and ϕ(t) > 0
for all t > 0. Then {λn} converges to zero.

3 Main Results
Theorem 9 Let E be a real reflexive strictly convex
Banach space with a uniformly Gâteaux differentiable
norm, C a nonempty closed convex subset of E, and
{T (t)} a u.a.r nonexpansive semigroup from C into
itself such that

F := Fix(F) =
∩
t>0

Fix(T (t)) ̸= ∅,

and f : C → C a weakly contractive mapping with
function ψ. Suppose limm→∞ tm = ∞ and αm ∈
[0, 1] such that limm→∞ αm = 0. If {zm} is defined
by

zm = αmf(zm) + (1− αm)T (tm)zm,m ≥ 1.
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Let z1 ∈ C. Then as m → ∞, {zm} converges
strongly to some common fixed point p of F such that
p is the unique solution in F to the following varia-
tional inequality:

⟨f(p)− p, j(x− p)⟩ ≤ 0,∀x ∈ F. (11)

Proof: We first show that the uniqueness of solution
to the variational inequality (11) in F . In fact, suppose
p, q ∈ F satisfy (11), we have that

⟨f(p)− p, j(q − p)⟩ ≤ 0

and
⟨f(q)− q, j(p− q)⟩ ≤ 0.

Combining the above two inequalities, we have

∥q − p∥2 ≤ ∥f(p)− f(q)∥∥q − p∥
≤ (∥p− q∥ − ψ(∥p− q∥))∥q − p∥.

Thus,

∥q − p∥ ≤ ∥p− q∥ − ψ(∥p− q∥),

we can obtain that p− q = 0, or p = q.

Next we show the boundedness of {zm}. Indeed,
for any fixed y ∈ F , we have

∥zm − y∥ = ∥αmf(zm) + (1− αm)T (tm)zm − y∥
≤ αm∥f(zm)− y∥+ (1− αm)∥T (tm)zm − y∥
≤ αm∥f(zm)− f(y)∥+ αm∥f(y)− y∥

+(1− αm)∥zm − y∥
≤ αm∥zm − y∥ − αmψ(∥zm − y∥)

+αm∥f(y)− y∥+ (1− αm)∥zm − y∥
= ∥zm − y∥ − αmψ(∥zm − y∥)

+αm∥f(y)− y∥.

So, we obtain that

ψ(∥zm − y∥) ≤ ∥f(y)− y∥.

Suppose {zm − y} is not bounded. Then there exists
a sequence {mk} in (0,∞) with mk → ∞ as k → ∞
such that

∥zmk
− y∥ > k, ∀k ∈ N. (12)

Since ψ is nondecreasing and limt→∞ ψ(t) = ∞, it
follows from (12) that

ψ(k) < ψ(∥zmk
− y∥) ≤ ∥f(y)− y∥,

a contraction.
Thus {zm} is bounded, and so are {T (tm)zm}

and {f(zm)}. This implies that

lim
m→∞

∥zm − T (tm)zm∥
= lim

m→∞
αm∥T (tm)zm − f(zm)∥ = 0.

Since {T (t)} is u.a.r nonexpansive semigroup and
limm→∞ tm = ∞, then for all h > 0,

limm→∞ ∥T (h)T (tm)zm − T (tm)zm∥
≤ lim sup

m→∞x∈K
∥T (h)T (tm)x− T (tm)x∥ = 0,

whereK is any bounded subset ofC containing {zm}.
Hence,

∥zm −T (h)zm∥ ≤ ∥zm − T (tm)zm∥
+∥T (tm)zm − T (h)T (tm)zm∥
+∥T (h)T (tm)zm − T (h)zm∥
≤ 2∥zm − T (tm)zm∥
+∥T (tm)zm − T (h)T (tm)zm∥ → 0,
m→ ∞.

That is, for all h > 0,

lim
m→∞

∥zm − T (h)zm∥ = 0. (13)

We claim that the set {zm} is sequentially com-
pact.

Define the function φ : C → R by

φ(x) := µm∥zm − x∥2, x ∈ C.

Since E is reflexive,

lim
∥x∥→∞

φ(∥x∥) = ∞,

and φ is continuous convex function, we have that the
set

M := {y ∈ C : φ(y) = inf
x∈C

φ(x)}, (14)

which is nonempty closed convex and bounded. Fur-
thermore, M is invariant under T (t) (for all t > 0). In
fact, for each y ∈M , we have

φ(T (t)y) = µm∥zm − T (t)y∥2
≤ µm∥T (t)zm − T (t)y∥2
≤ µm∥zm − y∥2 = φ(y).

Hence, T (t)y ∈ M . As y is arbitrary, then
T (t)(M) ⊂ M . Let u ∈ F , since every nonempty
closed convex subset of a strictly convex and reflex-
ive Banach space is a Chebyshev set (see [13]), there
exists an unique p ∈M such that

∥u− p∥ = inf
x∈M

∥u− x∥,

since T (t)u = u and T (t)p ∈M ,

∥u− T (t)p∥ = ∥T (t)u− T (t)p∥ ≤ ∥u− p∥.
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Hence T (t)p = p by the uniqueness of p ∈ M . Since
t is arbitrary, it follows that p ∈ F . Using Lemma 6
together with p ∈M , we obtain that

µm⟨z − p, j(zm − p)⟩ ≤ 0, ∀z ∈ C.

In particular

µm⟨f(p)− p, j(zm − p)⟩ ≤ 0. (15)

Since f is weakly contraction, we have

∥zm − p∥2 = ⟨zm − f(zm), j(zm − p)⟩
+⟨f(zm)− f(p), j(zm − p)⟩+ ⟨f(p)− p, j(zm − p)⟩
≤ ⟨zm − f(zm), j(zm − p)⟩
+∥f(zm)− f(p)∥∥zm − p∥+ ⟨f(p)− p, j(zm − p)⟩
≤ ⟨zm − f(zm), j(zm − p)⟩+ ∥zm − p∥2
−∥zm − p∥ψ(∥zm − p∥) + ⟨f(p)− p, j(zm − p)⟩,

∥zm − p∥ψ(∥zm − p∥)
≤ ⟨zm − f(zm), j(zm − p)⟩+ ⟨f(p)− p, j(zm − p)⟩,

(16)
and

⟨zm − f(zm), j(zm − p)⟩
= (1− αm)⟨T (tm)zm − f(zm), j(zm − p)⟩
= (1− αm)⟨T (tm)zm−zm+zm−f(zm), j(zm − p)⟩,

⟨zm − f(zm), j(zm − p)⟩
≤ 1−αm

αm
⟨T (tm)zm − zm, j(zm − p)⟩

≤ 1−αm
αm

⟨T (tm)zm − T (tm)p+ p− zm, j(zm − p)⟩
≤ 0.

Hence, we get

⟨zm − f(zm), j(zm − p)⟩ ≤ 0,∀m ∈ N. (17)

Together with above inequalities (15), (16), (17), we
obtain that

µm∥zm − p∥ψ(∥zm − p∥) ≤ 0,

therefore, there exists a subsequence {zmi} of {zm}
such that zmi → p(i→ ∞).

Next we show that p is a solution in F to the vari-
ational inequality(11).

Since the duality map j is a single-valued and
norm topology to weak∗ topology uniformly continu-
ous on bounded subset of E, and zmi → p, (i → ∞),
we have ∥(I − f)zm − (I − f)p∥ → 0, (i→ ∞), and
for all x ∈ F , we observe that

|⟨zmi − f(zmi), j(zmi − x)⟩ − ⟨p− f(p), j(p− x)⟩|
= |⟨zmi − f(zmi)− (p− f(p)), j(zmi − x)⟩

+⟨p− f(p), j(zmi − x)− j(p− x)⟩|
≤ ∥zmi − f(zmi)− (p− f(p))∥∥zmi − x∥

+|⟨p− f(p), j(zmi − x)− j(p− x)⟩| → 0,
i→ ∞.

It follows from (17) that
⟨f(p)− p, j(x− p)⟩

= lim
i→∞

⟨f(zmi)− zmi , j(x− zmi)⟩ ≤ 0.

That is, p ∈ F is a solution of (11). Hence p = q
by uniqueness. In a similar way, it can be show that
each cluster point of the sequence {zm} is equal to q.
Therefore, zm → p as m→ ∞.

Corollary 10 Let E be a real reflexive strictly con-
vex Banach space with a uniformly Gâteaux differ-
entiable norm, C a nonempty closed convex sub-
set of E, and {T (t)} a u.a.r nonexpansive semi-
group from C into itself such that F := Fix(F) =∩

t>0 Fix(T (t)) ̸= ∅, and f : C → C a fixed contrac-
tive mapping with contractive coefficient β ∈ [0, 1).
Suppose limm→∞ tm = ∞ and αm ∈ [0, 1] such that
limm→∞ αm = 0. If {zm} is defined by

zm = αmf(zm) + (1− αm)T (tm)zm,m ≥ 1.

Let z1 ∈ C. Then as m → ∞, {zm} converges
strongly to some common fixed point p of F such that
p is the unique solution in F to the variational in-
equality(11).

Theorem 11 LetC be a nonempty closed convex sub-
set of a real reflexive strictly convex Banach space
E with a uniformly Gâteaux differentiable norm, and
{T (t)} a u.a.r nonexpansive semigroup from C into
itself such that

F := Fix(F) =
∩
t>0

Fix(T (t)) ̸= ∅,

and f : C → C a weakly contractive mapping
with function ψ. Suppose limn→∞ tn = ∞. Let
{αn}, {βn} be two sequences in (0,1) with αn+βn ≤
1(n ≥ 1), and {γn} a sequence in [0,1]. The se-
quence {xn} is given by (10). Let x1 ∈ C and assume
that {αn}, {βn}, {γn}, ψ satisfy the following condi-
tions:

(i) limn→∞ αn = 0;

(ii)
∞∑
n=1

αn = ∞;

(iii) 0 < lim inf
n→∞

βn

≤ lim sup
n→∞

βn < 1;

(iv) inf{ψ(∥xn − q∥)/∥xn − q∥ : xn ̸= q, n ∈
N} = δ > 0 for q ∈ F ;

(v) lim
n→∞

|γn+1 − γn| = 0 and lim inf
n→∞

γn > 0.
Then as n → ∞, {xn} defined by (10) converges

strongly to some common fixed point p of F such that
p is the unique solution in F to the variational in-
equality (11).
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Proof: The proof is divided into five steps.
Step 1. We show that {xn} is bounded. Take q ∈ F .
It follows that

∥xn+1 −q∥ ≤ αn∥f(xn)− q∥+ βn∥xn − q∥
+(1− αn − βn)∥T (tn)yn − q∥
≤ αn∥f(xn)− f(q)∥+ αn∥f(q)− q∥
+βn∥xn − q∥+ (1− αn − βn)∥yn − q∥
≤ αn∥xn − q∥ − αnψ(∥xn − q∥)
+αn∥f(q)− q∥+ βn∥xn − q∥
+(1− αn − βn)∥yn − q∥
= (αn + βn)∥xn − q∥ − αnψ(∥xn − q∥)
+αn∥f(q)− q∥+ (1− αn − βn)∥yn − q∥,

and

∥yn − q∥ = ∥γn(xn − q)
+(1− γn)(T (tn)xn − q)∥
≤ γn∥xn − q∥+ (1− γn)∥xn − q∥
= ∥xn − q∥.

Since 0 < δ = inf{ψ(∥xn − q∥)/∥xn − q∥ :

xn ̸= q, n ∈ N},

and together with the above two inequalities, we have

∥xn+1 −q∥ ≤ ∥xn − q∥ − αnδ∥xn − q∥
+αn∥f(q)− q∥
= (1− αnδ)∥xn − q∥+ αn∥f(q)− q∥.

By induction,

∥xn − q∥ ≤ max{∥x1 − q∥, 1
δ
∥f(q)− q∥}, n ≥ 1,

consequently, {xn} is bounded, and so are
{yn}, {T (tn)xn}, {T (tn)yn} and {f(xn)}.

Step 2. We show that limn→∞ ∥xn+1 − xn∥ = 0.
Indeed, define a sequence {zn} by

xn+1 = βnxn + (1− βn)zn, n ≥ 1,

and we have

zn+1 − zn
= xn+2−βn+1xn+1

1−βn+1
− xn+1−βnxn

1−βn

= αn+1f(xn+1)+(1−αn+1−βn+1)T (tn+1)yn+1

1−βn+1

−αnf(xn)+(1−αn−βn)T (tn)yn
1−βn

= αn+1

1−βn+1
f(xn+1)− αn

1−βn
f(xn)

+1−αn+1−βn+1

1−βn+1
T (tn+1)yn+1

−1−αn−βn

1−βn
T (tn)yn

= αn+1

1−βn+1
f(xn+1)− αn

1−βn
f(xn)

+1−αn+1−βn+1

1−βn+1
(T (tn+1)yn+1 − T (tn+1)yn)

+1−αn+1−βn+1

1−βn+1
(T (tn+1)yn − T (tn)yn)

+(1−αn+1−βn+1

1−βn+1
− 1−αn−βn

1−βn
)T (tn)yn,

and

∥yn+1 − yn∥
= ∥γn+1xn+1 + (1− γn+1)T (tn+1)xn+1

−γnxn − (1− γn)T (tn)xn∥
≤ γn+1∥xn+1 − xn∥+ |γn+1 − γn|∥xn∥
+(1− γn+1)∥T (tn+1)xn+1 − T (tn+1)xn∥
+(1− γn+1)∥T (tn+1)xn − T (tn)xn∥
+|γn+1 − γn|∥T (tn)xn∥
≤ ∥xn+1 − xn∥+ |γn+1 − γn|∥xn∥
+(1− γn+1)∥T (tn+1)xn − T (tn)xn∥
+|γn+1 − γn|∥T (tn)xn∥.

Together with the above two inequalities, we obtain
that

∥zn+1 − zn∥ − ∥xn+1 − xn∥
≤ αn+1

1−βn+1
∥f(xn+1)∥+ αn

1−βn
∥f(xn)∥

+1−αn+1−βn+1

1−βn+1
∥T (tn+1)yn+1 − T (tn+1)yn∥

+1−αn+1−βn+1

1−βn+1
∥T (tn+1)yn − T (tn)yn∥

+|1−αn+1−βn+1

1−βn+1
− 1−αn−βn

1−βn
|∥T (tn)yn∥

−∥xn+1 − xn∥
≤ αn+1

1−βn+1
∥f(xn+1)∥+ αn

1−βn
∥f(xn)∥

+1−αn+1−βn+1

1−βn+1
[∥xn+1 − xn∥

+|γn+1 − γn|(∥xn∥+ ∥T (tn)xn∥)
+(1− γn+1)∥T (tn+1)xn − T (tn)xn∥]
+1−αn+1−βn+1

1−βn+1
∥T (tn+1)yn − T (tn)yn∥

+|1−αn+1−βn+1

1−βn+1
− 1−αn−βn

1−βn
|∥T (tn)yn∥

−∥xn+1 − xn∥
= αn+1

1−βn+1
∥f(xn+1)∥+ αn

1−βn
∥f(xn)∥

+(1−αn+1−βn+1

1−βn+1
− 1)∥xn+1 − xn∥

+1−αn+1−βn+1

1−βn+1
[|γn+1 − γn|(∥xn∥+ ∥T (tn)xn∥)

+(1− γn+1)∥T (tn+1)xn − T (tn)xn∥]
+1−αn+1−βn+1

1−βn+1
∥T (tn+1)yn − T (tn)yn∥

+|1−αn+1−βn+1

1−βn+1
− 1−αn−βn

1−βn
|∥T (tn)yn∥.

If tn+1 > tn, by (u.a.r), we have

∥T (tn+1)xn − T (tn)xn∥

= ∥T (tn+1 − tn)T (tn)xn − T (tn)xn∥ → 0. (18)

If tn+1 < tn,interchange tn+1 and tn, we also can
obtain

∥T (tn+1)xn − T (tn)xn∥ → 0,

and similarly, we get

∥T (tn+1)yn − T (tn)yn∥ → 0. (19)
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Thus it follows from the conditions (i), (iii), (v) and
(18), (19), we obtain that

lim sup
n→∞

(∥zn+1 − zn∥ − ∥xn+1 − xn∥) ≤ 0.

Hence, by Lemma 7, we have

lim
n→∞

∥zn − xn∥ = 0,

which imply that

lim
n→∞

∥xn+1 − xn∥ = 0. (20)

Step 3. For each t ∈ (0,∞), ∥T (t)xn − xn∥ → 0.
Indeed, we have that

∥xn+1 − T (tn)xn∥
≤ ∥xn+1 − T (tn)yn + T (tn)yn − T (tn)xn∥
≤ ∥xn+1 − T (tn)yn∥+ ∥yn − xn∥
= ∥xn+1 − T (tn)yn∥+ (1− γn)∥xn − T (tn)xn∥
≤ ∥xn+1 − T (tn)yn∥+ (1− γn)∥xn+1 − xn∥
+(1− γn)∥xn+1 − T (tn)xn∥.

So

∥xn+1 − T (tn)xn∥ ≤ 1

γn
∥xn+1 − T (tn)yn∥

+
1− γn
γn

∥xn+1 − xn∥.

And as

∥xn+1 − T (tn)yn∥ = ∥αnf(xn) + βnxn
+(1− αn − βn)T (tn)yn − T (tn)yn∥
≤ αn∥f(xn)− T (tn)yn∥+ βn∥xn − T (tn)yn∥
≤ αn∥f(xn)− T (tn)yn∥
+βn∥xn − xn+1∥
+βn∥xn+1 − T (tn)yn∥,

(1− βn)∥xn+1 − T (tn)yn∥
≤ αn∥f(xn)− T (tn)yn∥+ βn∥xn − xn+1∥

∥xn+1 − T (tn)yn∥
≤ αn

1−βn
∥f(xn)− T (tn)yn∥+ βn

1−βn
∥xn − xn+1∥,

by (i), (iii), (v), (20) and together with above inequal-
ities, we get

∥xn − T (tn)xn∥ → 0, (n→ ∞). (21)

Let K be any bounded subset of C which contains the
sequence {xn}. It follows that

∥T (t)xn − xn∥ ≤ ∥T (t)xn − T (t)T (tn)xn∥
+∥T (t)T (tn)xn − T (tn)xn∥+ ∥T (tn)xn − xn∥
≤ 2∥xn − T (tn)xn∥+ supx∈K ∥T (t)T (tn)x− T (tn)x∥.

So we have

∥T (t)xn − xn∥ → 0, (n→ ∞). (22)

Step 4. We show that

lim sup
n→∞

⟨(I − f)p, j(p− xn+1)⟩ ≤ 0. (23)

Let

zm = αmf(zm) + (1− αm)T (tm)zm,

where tm and αm satisfies the conditions of Theorem
9. Then we have that

lim
m→∞

zm = p.

From the definition of ψ, we know that

lim
m→∞

ψ(∥zm − p∥) = ψ(0) = 0.

Since

∥zm − xn+1∥2
= αm⟨f(zm)− xn+1, j(zm − xn+1)⟩
+(1− αm)⟨T (tm)zm − xn+1, j(zm − xn+1)⟩
= (1− αm)⟨T (tm)zm − T (tm)xn+1, j(zm − xn+1)⟩
+(1− αm)⟨T (tm)xn+1 − xn+1, j(zm − xn+1)⟩
+αm⟨f(zm)− f(p) + f(p) + zm

−zm + p− p− xn+1, j(zm − xn+1)⟩
≤ (1− αm)∥zm − xn+1∥2
+(1− αm)⟨T (tm)xn+1 − xn+1, j(zm − xn+1)⟩
+αm⟨f(zm)− f(p)− zm + p, j(zm − xn+1)⟩
+αm⟨f(p)− p, j(zm − xn+1)⟩
+αm⟨zm − xn+1, j(zm − xn+1)⟩
≤ ∥zm − xn+1∥2
+(1− αm)⟨T (tm)xn+1 − xn+1, j(zm − xn+1)⟩
+αm⟨f(p)− p, j(zm − xn+1)⟩
+αm(∥f(zm)− f(p)∥+ ∥zm − p∥)∥zm − xn+1∥,

so, we can obtain that

⟨f(p)− p, j(xn+1 − zm)⟩
≤ 1−αm

αm
∥T (tm)xn+1 − xn+1∥∥zm − xn+1∥

+(2∥zm − p∥ − ψ(∥zm − p∥))∥zm − xn+1∥
≤M1

1−αm
αm

∥T (tm)xn+1 − xn+1∥
+2M1∥zm − p∥ − ψ(∥zm − p∥)M1

≤ M1
αm

∥T (tm)xn+1 − xn+1∥
+2M1∥zm − p∥ − ψ(∥zm − p∥)M1,

where M1 is a constant such that

∥xn+1 − zm∥ ≤M1.
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Firstly, we take limit as n→ ∞, and then as m→ ∞
in above inequality (using (22))

lim sup
m→∞

lim sup
n→∞

⟨f(p)− p, j(xn+1 − zm)⟩ ≤ 0.

On the other hand, since J is single-valued and
norm topology to weak∗ topology uniformly continu-
ous on bounded set of E and

lim
m→∞

zm = p,

we get

lim
m→∞

(xn+1 − zm) = xn+1 − p.

Therefore, we have

⟨f(p)−p, j(xn+1−zm)⟩ −→ ⟨f(p)−p, j(xn+1−p)⟩.

Thus, given ε > 0, there exists N ≥ 1, such that if
m > N , for all n, we have

⟨f(p)− p, j(xn+1 − p)⟩

< ⟨f(p)− p, j(xn+1 − zm)⟩+ ε. (24)

Therefore, by taking upper limit as n → ∞ firstly,
and then as m→ ∞ in both sides of (24)

lim supn→∞⟨f(p)− p, j(xn+1 − p)⟩

≤ lim sup
m→∞

lim sup
n→∞

⟨f(p)− p, j(xn+1 − zm)⟩+ ε.

Since ε is arbitrary, we obtain(23).
Thus, there exists a sequence {εn} in (0,∞)

which limn→∞ εn = 0 such that

⟨(I − f)p, j(p− xn+1)⟩ ≤ εn, ∀n ∈ N.

Step 5. limn→∞ ∥xn − p∥ = 0. Indeed, we have

∥xn+1 − p∥2
= ⟨αn(f(xn)− p) + βn(xn − p)
+(1− αn − βn)(T (tn)yn − p), j(xn+1 − p)⟩
= ⟨αn(f(xn)− f(p)) + βn(xn − p)
+(1− αn − βn)(T (tn)yn − p), j(xn+1 − p)⟩
+αn⟨f(p)− p, j(xn+1 − p)⟩
≤ ∥αn(f(xn)− f(p)) + βn(xn − p)
+(1− αn − βn)(T (tn)yn − p)∥∥xn+1 − p∥
+αnεn
≤ [αn∥f(xn)− f(p)∥+ βn∥xn − p∥
+(1− αn − βn)∥T (tn)yn − p∥]∥xn+1 − p∥
+αnεn

≤ [αn∥xn − p∥ − αnψ(∥xn − p∥)
+βn∥xn − p∥
+(1− αn − βn)∥yn − p∥]∥xn+1 − p∥
+αnεn
≤ [(αn + βn)∥xn − p∥ − αnψ(∥xn − p∥)
+(1− αn − βn)∥γn(xn − p)
+(1− γn)(T (tn)xn − p)∥]∥xn+1 − p∥
+αnεn
≤ [∥xn − p∥ − αnψ(∥xn − p∥)]∥xn+1 − p∥
+αnεn
≤ 1

2 [∥xn − p∥ − αnψ(∥xn − p∥)]2
+1

2∥xn+1 − p∥2 + αnεn.

So,

∥xn+1 − p∥2
≤ ∥xn − p∥2 − 2αnψ(∥xn − p∥)∥xn − p∥
+α2

n(ψ(∥xn − p∥))2 + 2αnεn
≤ ∥xn − p∥2 − 2αnψ(∥xn − p∥)∥xn − p∥
+α2

n(ψ(M))2 + 2αnεn,

for some M > 0. Since {∥xn − p∥} is bounded, thus,
for λn = ∥xn−p∥2, we obtain the following recursive
inequality:

λn+1 ≤ λn − αnϕ(λn) + ωn,

where
ωn = αn[αn(ψ(M))2 + 2εn]

and
ϕ(t) = 2

√
tψ(

√
t).

So {xn} converges strongly to p by Lemma 8. ⊓⊔
If γn = 1, the following result is clearly gained.

Corollary 12 Let C be a nonempty closed convex
subset of a real reflexive strictly convex Banach space
E with a uniformly Gâteaux differentiable norm, and
{T (t)} a u.a.r nonexpansive semigroup from C into
itself such that

F := Fix(F) =
∩
t>0

Fix(T (t)) ̸= ∅,

and f : C → C a weakly contractive mapping
with function ψ. Suppose limn→∞ tn = ∞. Let
{αn}, {βn} be two sequences in (0,1) with αn+βn ≤
1. The sequence {xn} is given by

xn+1 = αnf(xn) + βnxn + (1− αn − βn)T (tn)xn.

Let x1 ∈ C and assume that {αn}, {βn}, ψ satisfy the
following conditions:

(i) lim
n→∞

αn = 0;

(ii)
∞∑
n=1

αn = ∞;
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(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iv) inf{ψ(∥xn − q∥)/∥xn − q∥ :

xn ̸= q, n ∈ N} = δ > 0,∀q ∈ F.

Then as n → ∞, {xn} converges strongly to some
common fixed point p of F such that p is the unique
solution in F to the variational inequality (11).

Corollary 13 Let C be a nonempty closed convex
subset of a real reflexive strictly convex Banach space
E with a uniformly Gâteaux differentiable norm, and
{T (t)} a u.a.r nonexpansive semigroup from C into
itself such that

F := Fix(F) =
∩
t>0

Fix(T (t)) ̸= ∅,

and f : C → C a fixed contractive mapping with con-
tractive coefficient β ∈ [0, 1). Suppose limn→∞ tn =
∞. Let {αn}, {βn} be two sequences in (0,1) with
αn + βn ≤ 1(n ≥ 1), and {γn} a sequence in [0,1].
The sequence {xn} is given by (10). Let x1 ∈ C and
assume that {αn}, {βn}, {γn}, ψ satisfy the following
conditions:

(i) lim
n→∞

αn = 0;

(ii)
∞∑
n=1

αn = ∞;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iv) inf{ψ(∥xn − q∥)/∥xn − q∥ :

xn ̸= q, n ∈ N} = δ > 0, forq ∈ F ;

(v) lim
n→∞

|γn+1 − γn| = 0 and lim inf
n→∞

γn > 0.
Then as n → ∞, {xn} converges strongly to some
common fixed point p of F such that p is the unique
solution in F to the variational inequality (11).

Corollary 14 Let C be a nonempty closed convex
subset of a real uniformly convex Banach space E
with a uniformly Gâteaux differentiable norm, and
{T (t)} a u.a.r nonexpansive semigroup from C into
itself such that

F := Fix(F) =
∩
t>0

Fix(T (t)) ̸= ∅,

and f : C → C a weakly contractive mapping
with function ψ. Suppose limn→∞ tn = ∞.
Let {αn}, {βn} be two sequences in (0,1) with
αn + βn ≤ 1(n ≥ 1), and {γn} a sequence in [0,1].
The sequence {xn} is given by (10). Let x1 ∈ C and
assume that {αn}, {βn}, {γn}, ψ satisfy the following
conditions:

(i) lim
n→∞

αn = 0; (ii)
∞∑
n=1

αn = ∞;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iv) inf{ψ(∥xn − q∥)/∥xn − q∥ :

xn ̸= q, n ∈ N} = δ > 0, forq ∈ F ;

(v) lim
n→∞

|γn+1 − γn| = 0 and lim inf
n→∞

γn > 0.
Then as n → ∞, {xn} converges strongly to some
common fixed point p of F such that p is the unique
solution in F to the variational inequality (11).

Remark 15 When {αn}, {βn}, {γn}, ψ satisfy differ-
ent conditions, the results in this paper extend and im-
prove some related results considered by Song and Xu
[8], Xu [9], Wu, Chang and Yuan[10] and the other
authors.
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